[tex]\frac{(5 + \sqrt{3}) - (5 - \sqrt{3})}{5 - \sqrt{3}} = \frac{5 + \sqrt{3} - 5 + \sqrt{3}}{5 - \sqrt{3}} = \frac{5 - 5 + \sqrt{3} + \sqrt{3}}{5 - \sqrt{3}} = \frac{2 \sqrt{3}}{5 - \sqrt{3}} [/tex]
Kemudian rasionalkan penyebutnya,
[tex]\frac{2 \sqrt{3}}{5 - \sqrt{3}} = \frac{2 \sqrt{3}}{5 - \sqrt{3}} \times \frac{5 + \sqrt{3}}{5 + \sqrt{3}} = \frac{(2 \sqrt{3})(5 + \sqrt{3})}{(5 - \sqrt{3})(5 + \sqrt{3})} [/tex]
[tex]= \frac{10 \sqrt{3} + 2 \sqrt{9}}{25 + 5 \sqrt{3} - 5 \sqrt{3} - \sqrt{9}} [/tex]
[tex]= \frac{10 \sqrt{3} + 2 \sqrt{9}}{25 - \sqrt{9}} = \frac{10 \sqrt{3} + 2 \times 3}{25 - 3} = \frac{10 \sqrt{3} + 6}{22} = \frac{5 \sqrt{3} + 3}{11} [/tex]