Selesaikanlah dengan cara melengkapkan kuadrat sempurna! a. x²-2x-35=0 b. x²-10x+2=0 c. 2x²+6x+3=0

Jawaban 1

Jawaban:

Untuk metode melengkapkan kuadrat sempurna, harus ada:

1. Ruas kiri harus x² + bx

2. Gunakan rumus (½ · b)² kemudian ditambah ke kedua ruas

a. x² - 2x - 35 = 0

[tex]{x}^{2} - 2x - 35 = 0 \\ {x}^{2} - 2x = 35 \\ {x}^{2} - 2x + ( \frac{1}{2} b)^{2} = 35 + ( \frac{1}{2} b)^{2}\\ x^2 - 2x + ( \frac{1}{2} ( - 2) {)}^{2} = 35 + ( \frac{1}{2} ( - 2))^{2}\\ {x}^{2} - 2x + 1 = 35 + 1 \\ {(x - 1)}^{2} = 36 \\ \sqrt{ {(x - 1)}^{2} } = ±\sqrt{36} \\ \\ x - 1 = ±6 \\ \\ x = 6 + 1 ⟹x = 7 \\ x = - 6 + 1 ⟹x = - 5[/tex]

b. x² - 10x + 2 = 0

[tex]{x}^{2} - 10x + 2 = 0 \\ {x}^{2} - 10x = - 2 \\ {x}^{2} - 10x + ( \frac{1}{2} b {)}^{2} = - 2 + ( \frac{1}{2} b {)}^{2} \\ {x}^{2} - 10x + ( \frac{1}{2} ( - 10) {)}^{2} = - 2 + ( \frac{1}{2} ( - 10 {))}^{2} \\ {x}^{2} - 10x+ 25 = - 2 + 25 \\ (x - 5 {)}^{2} = 23 \\ \sqrt{ {(x - 5)}^{2} } = ± \sqrt{23} \\ x - 5 = ± \sqrt{23} \\ \\x - 5 = \sqrt{23} ⟹x = \sqrt{23} + 5 \\ x - 5 = - \sqrt{23} ⟹x = - \sqrt{23} + 5[/tex]

c. 2x² + 6x + 3 = 0

[tex]2 {x}^{2} + 6x + 3 = 0 \\ \frac{2 {x}^{2} }{2} + \frac{6x}{2} + \frac{3}{2} = 0 \\ {x}^{2} + 3x + \frac{3}{2} = 0 \\ {x}^{2} + 3x = - \frac{3}{2} \\ {x}^{2} + 3x + ( \frac{1}{2} b {))}^{2} = - \frac{3}{2} + ( \frac{1}{2} b) {)}^{2} \\ {x}^{2} + 3x + ( \frac{1}{2} (3) {)}^{2} = - \frac{3}{2} + ( \frac{1}{2} (3) {)}^{2} \\ {x}^{2} + 3x + \frac{9}{4} = - \frac{3}{2} + \frac{9}{4} \\ {x}^{2} + 3x + \frac{9}{4} = \frac{3}{4} \\ (x + \frac{3}{2} {)}^{2} = \frac{3}{4} \\ \sqrt{(x + \frac{3}{2} {)}^{2} } = ± \sqrt{ \frac{3}{4} } \\ x + \frac{3}{2} = ± \frac{ \sqrt{3} }{ \sqrt{2} } \\ x + \frac{3}{2} = ±\frac{ \sqrt{3} }{2} \\ \\ x + \frac{3}{2} = \frac{ \sqrt{3} }{2} ⟹x = \frac{ \sqrt{3} - 3 }{2} \\ x + \frac{3}{2} = - \frac{ \sqrt{3} }{2} ⟹x = - \frac{ \sqrt{3} - 3 }{2}

[/tex]

Apakah kamu tahu jawabannya? Tambahkan di sini!

Can't find the answer?

Log in dengan Google

atau

Lupa password kamu?

Saya tidak punya akun, dan saya ingin Daftar

Pilih bahasa dan wilayah
How much to ban the user?
1 hour 1 day 100 years