Operasi Bentuk Akar
▪︎ a√c ± b√c = (a ± b)√c
▪︎ a√c × b√d = (a × b)√(c × d)
▪︎ √c × √d = √(c × d)
▪︎ √a² = a atau (√a)² = a
a.) √2 × √8 = √(2×8) = √16 = 4
b.) 5√7 × √243 = 5√7 × √(81×3)
= 5√7 × √81√3
= 5√7 × 9√3
= (5×9)√(7×3)
= 45√21
c.) √pq × 3√p ×5√q = (3×5)√(pq × p × q)
= 15√(p²q²)
= 15√p²√q²
= 15pq
d.) √2 (√6+√3) = √2√6 + √2√3
= √12 + √6
= √4√3 + √6
= 2√3 + √6
e.) (6+√3) (6-√3) = 6² - (√3)²
= 36 - 3
= 33
atau
(6+√3)(6-√3) = 6² - 6√3 + 6√3 - (√3)²
= 36 - 3
= 33
Semoga membantu.
Note:
(a + b)(a - b) = a² - b²